1.6: Substitution Method and Exact Equations

As is usual with any substitution method, we wish to substitute in a new variable $v=\alpha(x, y)$ into the differential equation $d y / d x=f(x, y)$ so that the new differential equation $d v / d x=g(x, y)$ is one that we know how to solve.

Example 1. Using substitution, solve the differential equation

$$
\frac{d y}{d x}=(x+y+3)^{2} .
$$

Definition 1. A homogeneous first-order differential equation is one that can be written in the form $\frac{d y}{d x}=f\left(\frac{y}{x}\right)$. In this case we use the substitution $v=\frac{y}{x}$ so that

$$
y=v x, \quad \text { and } \quad \frac{d y}{d x}=v+x \frac{d v}{d x} .
$$

Example 2. Solve the differential equation

$$
\begin{equation*}
2 x y \frac{d y}{d x}=4 x^{2}+3 y^{2} . \tag{1}
\end{equation*}
$$

Exercise 1. Solve the initial value problem

$$
x \frac{d y}{d x}=y+\sqrt{x^{2}-y^{2}}, \quad y\left(x_{0}\right)=0 \quad\left(x_{0}>0\right)
$$

Definition 2. A first-order differential equation of the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \tag{2}
\end{equation*}
$$

is called a Bernoulli equation. Using the substitution $v=y^{1-n}$ (2) becomes

$$
\frac{d v}{d x}+(1-n) P(x) v=(1-n) Q(x)
$$

which we can solve using the methods from the previous section.

Example 3. Rewriting the (1) in the form

$$
\frac{d y}{d x}-\frac{3}{2 x} y=\frac{2 x}{y}
$$

solve using the method described above.

Exercise 2. Use the method of Bernoulli equations to solve

$$
x \frac{d y}{d x}+6 y=3 x y^{4 / 3}
$$

Example 4.

FIGURE 1.6.4. The airplane headed for the origin.

An airplane departs from point $(a, 0)$ located due East of its intended destination at the origin. The wind is blowing due North with a constant speed of w. We assume the plane is alway pointed at its destination so that its velocity vector v_{0} is also. (Figure 1.6.4)

Hence the trajectory $y=f(x)$ of the plane satisfies

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{v_{0} x}\left(v_{0} y-w \sqrt{x^{2}+y^{2}}\right) . \tag{3}
\end{equation*}
$$

Let $k=\frac{w}{v_{0}}$ and the substitution $y=x v$ to show that (3) has the solution

$$
\begin{equation*}
y(x)=\frac{a}{2}\left[\left(\frac{x}{a}\right)^{1-k}-\left(\frac{x}{a}\right)^{1+k}\right] . \tag{4}
\end{equation*}
$$

FIGURE 1.6.5. The components of the velocity vector of the airplane.

Exercise 3. Using (4), find the maximum amount by which the plane is blown of course when $a=200 \mathrm{mi}, v_{0}=500 \mathrm{mi} / \mathrm{h}$, and $w=100 \mathrm{mi} / \mathrm{h}$.

Definition 3. An exact differential equation is of the form

$$
\begin{equation*}
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0 \quad \text { or } \quad M(x, y) d x+N(x, y) d y=0 \tag{5}
\end{equation*}
$$

where $F(x, y)$ is a differentiable function of x and y. Recall that if F is twice differentiable then a necessary condition is that

$$
\frac{\partial M}{\partial y}=F_{x y}=F_{y x}=\frac{\partial N}{\partial x} .
$$

Example 5. Find the general solution to the differential equation

$$
y^{3} d x+3 x y^{2} d y=0
$$

Theorem 1. (Criterion for Exactness) Suppose that the functions $M(x, y)$ and $N(x, y)$ are continuous and have continuous partial derivatives on the open rectangle R. Then the differential equation (5) is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Homework. Example 9 from the book. Read the Section and Examples on Reducible Second-Order Equations. 1-21, 31-39, 43-51, 57-61 (odd)

